Odychess Approach: A Dialectical, Constructivist, and Adaptive Method for Teaching Chess with Generative Artificial Intelligences

Main Article Content

Ernesto Giralt Hernandez
Lázaro Antonio Bueno Pérez

Abstract

Introduction: Chess teaching has evolved through different approaches; however, traditional methodologies, often based on memorization, contrast significantly with the new possibilities offered by generative artificial intelligence, a technology still little explored in this field.
Objective: To empirically validate the effectiveness of the Odychess Approach in improving chess knowledge, strategic understanding, and metacognitive skills in students.


Materials and methods: A quasi-experimental study was conducted with a pre-test/post-test design and a control group (N=60). The experimental intervention implemented the Odychess Approach, incorporating a Llama 3.3 language model that was specifically adapted using Parameter-Efficient Fine-Tuning (PEFT) techniques to act as a Socratic chess tutor. Quantitative assessment instruments were used to measure chess knowledge, strategic understanding, and metacognitive skills before and after the intervention.


Results: The results of the quasi-experimental study showed significant improvements in the experimental group compared to the control group in the three variables analyzed: chess knowledge, strategic understanding, and metacognitive skills. The complementary qualitative analysis revealed greater analytical depth, more developed dialectical reasoning, and greater intrinsic motivation in the students who participated in the Odychess-based intervention.
Conclusions: The Odychess Approach represents an effective pedagogical methodology for teaching chess, demonstrating the potential of the synergistic integration of constructivist and dialectical principles with generative artificial intelligence. The implications of this work are relevant for educators and institutions interested in adopting innovative pedagogical technologies and for researchers in the field of AI applied to education, highlighting the transferability of the language model adaptation methodology to other educational domains.

Downloads

Download data is not yet available.

Article Details

How to Cite
Giralt Hernandez, E., & Bueno Pérez, L. A. (2025). Odychess Approach: A Dialectical, Constructivist, and Adaptive Method for Teaching Chess with Generative Artificial Intelligences. Sport and Science, 10(2), e322. Retrieved from https://cienciaydeporte.reduc.edu.cu/index.php/cienciaydeporte/article/view/322
Section
Artículos Originales

References

Barrows, H. S. (1986). A taxonomy of problem-based learning methods. Medical Education, 20(6), 481-486. https://pubmed.ncbi.nlm.nih.gov/3796328/

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa

Bueno Pérez, L. A. (2000). Modelo para la enseñanza-aprendizaje del ajedrez en la universidad. Tesis de Doctorado (Doctorado en Ciencias Pedagógicas). Santiago de Cuba, Universidad de Oriente. Centro de Estudios de la Educación Superior “Manuel F. Gran”.

Bueno, L. (2015). Ajedrez juego ciencia y conciencia. Editorial Academia. La Habana, Cuba. https://www.libreriavirtual.cu/libreria/ajedrez-juego-ciencia-y-conciencia

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 55-81. https://www.sciencedirect.com/science/article/abs/pii/0010028573900042

Coll, C., Martín, E., Mauri, T., Miras, M., Onrubia, J., Solé, I., & Zabala, A. (2006). El constructivismo en el aula. Graó. https://books.google.com.cu/books/about/El_constructivismo_en_el_aula.html?id=si5frgEACAAJ&source=kp_book_description&redir_esc=y

De Groot, A. D. (1965). Thought and choice in chess. Mouton. https://www.jstor.org/stable/j.ctt46n0r2

Gobet, F., & Simon, H. A. (1996). Templates in chess memory: A mechanism for recalling several boards. Cognitive Psychology, 31(1), 1-40. https://www.sciencedirect.com/science/article/abs/pii/S0010028596900110

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., & Vasic, P. (2024). The llama 3 herd of models. arXiv preprint arXiv:2407.21783. https://arxiv.org/abs/2407.21783.

Ramírez-Guerra, D. M., Bueno-Pérez, L. A., & Gordo-Gómez, Y. M. (2016). La capacitación en el proceso de masificación del ajedrez en las comunidades urbanas. Ciencia y Deporte, 1(2), 56-71. https://dialnet.unirioja.es/servlet/articulo?codigo=8100881

Reyes-Joa, H. M., Ramírez-Guerra, D. M., & Bueno-Pérez, L. A. (2020). El perfeccionamiento del proceso de enseñanza-aprendizaje del Ajedrez de la categoría 10-11 años. Ciencia y Deporte, 5(1), 19-31. https://dialnet.unirioja.es/servlet/articulo?codigo=8111228

Savery, J. R. (2006). Overview of problem-based learning: Definitions and distinctions. Interdisciplinary Journal of Problem-Based Learning, 1(1), 9-20. https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1002&context=ijpbl

Serper, G. (2015). Patterns, patterns everywhere! Chess.com. https://www.chess.com/article/view/chess-patterns-patterns-everywhere

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., et al. (2020). Transformers: State-of-the-art natural language processing. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 38-45. https://aclanthology.org/2020.emnlp-demos.6/

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)